
STABILITY OF AN INCOMPRESSIBLE FLUID ACTED ON BY SURFACE- 

TENSION FORCES. CASE OF A DOUBLY CONNECTED EQUILIBRIUM 

SURFACE 

V. R. Orel UDC 532.5 

The stability of the equilibrium position of a volume of incompressible fluid is 
considered; it is bounded by the rigid walls of the vessel and two equilibrium 
surfaces. The stability conditions are expressed in terms of parameters deter- 
mined for each of the surfaces by independent solution of the eigenvalue problem. 
The stability of an arbitrary volume of incompressible fluid having spherical 
segments as the two equilibrium surfaces is investigated as an example. 

i. Let a volume Q of an incompressible fluid bounded by the rigid walls of a vessel 
S and two interfaces ~i, E2 be located in a field of mass forces with potential ~. We 
assume for simplicity that El and E2 are free surfaces. Let oi, o= be the coefficients 
of surface tension on El and E2, and let ~i, ~2 be the differences in the coefficients of 
surface tension on the rigid body--fluid and rigid body--gas boundaries in the neighborhood 
of the contours LI and L= formed by the intersection of the free surfaces and S~ Then the 
potential energy of the system takes the form 

U 
E1 IS2 L1 L~ Q 

The necessary conditions for equilibrium of the volume Q are obtained by setting the 
first variation of the potential energy equal to zero [2, 3]. We assume further that the 
problem of finding the equilibrium form has been solved. The stability of the given equi- 
librium position is tested by determining the sign of the second variation of the potential 
energy. According to [4], a necessary condition for stability is that the second variation 
not be negative; a sufficient condition is 

6~U ~ 0 (i. 2) 

We shall make use of the expression obtained in [I] for the second variation of the 
energy of the equilibrium surface Z. Let n i (i = i, 2) be the unit normal, exterior to 
the region Q, to the surface Xi, and let Ni(~) be the small deviation of the point ~E i 
along the direction n i. The second variation in the energy U i of the i-th surface has the 
form [i] of a quadratic functional in the perturbation N = N i (i = i, 2), 

62Ui / 2, ------ I (-- AiN q- "~iN) N dEi + f (ZiN q- ON / Oei) N dl i ( I .  3) 
~'i Li 

Here h i is a Laplace operator [ 5 ]  on the surface Zi, while the functions Ti, Xi are 
equal to the following expressions [i]: 

zi On i ~Hi2(~)+2Ki(~),  ~ E ~  ( 1 . 4 )  

x~ (~) cos 
%i (r := ~ - -  ni (~) (sin 'h :#= O), ~ ~ L~ (1 .5 )  

sm Ti 
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where Hi(g) is the mean curvature, and Ki(~) is the Gaussian curvature [5] at the point 
~ Y i; Yi is the edge angle, Yi = ~i/Oi, x~(~) is the curvature of the normal cross 

section of the surface E i along the tangent to it, directed along the exterior normal to 
L i (we let e i represent the corresponding unit vector); ~i(~) is the similarly defined 
curvature of the normal cross section of the surface S at the point ~ ~ L i. 

We consider the following eigenvalue problem on the surfaces E i (i = i, 2): 

A ~ u ~  ~ ( - -  Ai + ~) u(~) = ~,u(U, ~ 2~ 
%~u (~) + Ou / ae~ = O, ~ ~ L~ (1.6) 

It may be shown [6] that each operator A i (i = i, 2) is self-adjoint on the set D i 
of functions twice continuously differentiable 0nri that satisfy the boundary condition 
(1.6) for the i-th problem on the contour L i. Thus, the eigenvalues of each problem of 
(1.6) are real numbers, while the eigenfunctions corresponding to the various eigenvalues 
are orthogonal on the corresponding surface Ei" Here the set of eig~nvalues of the i-th 
problem of (1.6) takes the form of a sequence [6] bounded from below and converging to 
k+oo. 

Let~Pk, o k (k = i, 2 .... ) be the eigenfunctions and eigenvalues of (1.6) on El, and 
~k, z k those on E2. With no loss of generality we may take the orthogonal systems of 
functions {~k }, {~k} to be normalized and the sequences of eigenvalues {gk}, {~k} to be 
arranged in ascending order, 

~1 < ~2 < .... ~I < • ~ ... (i. 7) 

Any perturbations NI ~ DI, N= ~ D2 of the surfaces 71, E= are representable as con- 
verging series 

N1---- ~a~q%, N~= ~ b ~  (1.8) 
k=l k=l 

Using (1.3), (i.8) to calculate ~U~, ~U2, we find 

k=l k~l 

The condition requiring the volume Q to be constant yields a relationship between the 

sequences {ak}, {bk}, 

~ Q =  SIVxd~"I-~ - IN2d~-~2 = /}~6/,k-~- E ~/)kb~ : - -0  ( 1 . 1 0 )  
E~ E~ k=l k=--I 

E~ E~ 

We assume the perturbations NI, Na to be nonzero. This condition may be taken in the 

form 

E1 E2 k=l k=i 

2. The stability investigation reduces to checking the sign of Series (1.9) for Condi- 
tions (i. i0), (1.12). Let W be the set of all pairs of sequences {a k, bi}, that satisfy 
(I. i0), (1.12). According to (1.2), it is sufficient for stability of the system for (1.9) 
to be positive on W. If there exists a set of numbers {a k, b i} ~W, such that the variation 
$2U, determined in accordance with (1.9) is negative, then the system is unstable. Let us 

�9 look at some cases in which the question of the sign of 52U is answered trivially. 

A. If ~I > 0, ~ ~ > 0, then as a consequence of (1.7), the expression (1.9) for ~2U is 
positive on W and the system is stable. 

B. Let v~ < 0, v: = 0. We let ~: = 1 and substitute zeros for all the remaining Ok, 
b i. Conditions (i.i0), (1.12) are satisfied. But for such a set of coefficients 

62U~ ~i<0 
and the system is unstable. An analogous statement holds for any negative eigenvalue if the 
volume (i. ii) for the corresponding eigenvalue is zero. 
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C. The system will also be unstable if among the numbers {~k }, {si } there are even 
two that are negative [with nonzero volumes (I.ii)]. The coefficients corresponding to 
these two eigenvalues are uniquely determined by (i. i0), (1.12), if we set the remaining 

ak, b i E O; here (1.9) is negative. 

We still must consider the case in which there is just one negative eigenvalue corres- 
ponding to an eigenfunction for which the coefficient (i.ii) is nonzero. To be specific 
we shall assume ~i is negative. We find the minimum of (1.9) on the set W, considering the 
following auxiliary functional: 

k~l k~l k=l k=l 

(2.1) 

where X, ~ are Lagrange multipliers. 

The necessary conditions for an extremum of the functional V yield 

a~ -~ -- ~v~/(v~ -- ~), b~ ---- -- ~w h / (x.~ -- ~) (2.2) 

In conjunction with (2.2), the normalization condition (1.12) permits us to express 
in terms of % 

,~ (X) = v# ~# 

(~"--~)= ~- ,= (• (2.3) 

Then 

(2.4) 

Allowing for (2.3), from the condition requiring conservation of the volume (i. I0) we 
obtain an equation for the unknown value of the parameter, 

oo 

Equation (2.5) has a countable set of roots {Xj}, which alternate with the poles Wk, ~i- 
By virtue of (1.7) we may say that 

%i ~ 2~ ~ ~s ~ -.. ( 2 . 6 )  

Substituting the arbitrary root Xj of (2.5) into (2.4), the expression for the second 
variation of the energy, and making use of (2.3), we may show without difficulty that 

52U (~j) = ~j (j ---- l ,  2 . . . .  ) ( 2 . 7 )  

T h u s ,  f r o m  ( 2 . 7 ) ,  ( 2 . 6 )  we h a v e  

rain 52U ~ ~i ( 2 . 8 )  
w 

We therefore see that the stability question is answered either by one of the condi- 
tions A, B, C or else is determined in accordance with (1.2) and (2.8) by the sign of the 
first root hl of (2.5). In the latter case a necessary condition for stability is that 
the first root of Eq. (2.5) be nonnegative, while a sufficient condition is that this root 
be positive. 

We note that if the kinematic constraints are such that on both surfaces only perturba- 
tions of the zero volume are admissible, then (2.5) splits into two equations, 

~ vk 2 tok~ 
v T ~ ,  = 0 ,  - - 0  ( 2 . 9 )  

The stability decision should be made on the basis of the sign of the smallest of the 
first roots of (2.9). There may be cases in which the first roots of (2.9) are positive, 
while the first root of (2.5) is negative, i.e., a system that is stable under surface per- 
turbations of the zero volume will prove to be unstable under arbitrary perturbations Ni~ 
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D1, N2 ~Da connected by Condition (i.i0) (see w 

These results may be generalized without difficulty to the case of an incompressible 
fluid having n equilibrium surfaces with n > 2. 

3. Let us consider the case in which both free surfaces Ex, Z2, the external field 
~, and the wetted surface S (in the neighborhood of the contours L i, L2) possess axial sym- 
metry. We let Z be the axis of symmetry. We introduce the cylindrical coordinates {r, 2, 8}. 
As the curvilinear coordinates on the surfaces El, ~2 we take the angle e and the length of 
arc s measured along a meridian. We specify the meridian of surface E i parametrically: 

r =  rz(s), z =  zi(s), O ~ < s ~ < c  i ( i =  1,2~ 

where  c .  i s  t h e  l e n g t h  o f  t h e  m e r i d i a n  o f  t h e  i - t h  s u r f a c e .  
i 

The L a p l a c e  o p e r a t o r  on E i has  t h e  form 

(3.1) r] Os ~ i~-s ' ri~ O02 

The e i g e n f u n c t i o n s  {~k(S ,  0 ) } ,  {~k(S ,  0)} o f  ( 1 . 6 )  s p l i t  i n t o  t h e  f o l l o w i n g  f a m i l i e s  
on E l ,  E2 (n = O, t ,  . . . ,  k = 1 , 2 , . . . ) :  

where  {~nk }, {~nk }, a r e  the  s e t s  o f  e i g e n f u n c t i o n s  o f  the  o n e - d i m e n s i o n a l  p ro b l em s  ( i  = 1 , 2 ) ,  

d r ~ -  s ~ - - - - b ~  u = ~ , u  
~i r i ds ri2 

O < s  < c ~ ,  n = O, t . . . .  

[ Z i u -  tt' ]~-o = [Ziu + u'h=~ = 0 

(3.3) 

The function T i is determined by (1.4) and the parameter Xi by (1.5), or by the condi- 
tion for boundedness of the solution if the corresponding end points of the meridian lie on 

the z axis. 

The functions~ nk, ~ni (3.2) correspond to the eigenvalues ~nk, • ni of the problems 
(3.3); the numbering is such that the numbers {~nk}, {~ni } satisfy (1.7) for any fixed value 
n(=0, i, ...). 

w . (1.11) will equal zero. Thus, for instab- 
Clearly, when n ~ i all the volumes Vnk, w for just one of the numbers Vnk' ~ni (n 

ility of the system it is sufficient (case B, 
i) to be negative. It has been shown in [i] that when n > i the inequalities 

~.i > ~11, x.i > x~1 

are satisfied. 

Then, when (1.7) is taken in account, the necessary conditions for stability under 
perturbations having nonzero (n ~ i) harmonics in the peripheral direction take the form 

~11 > O, ~ > 0 (3.4) 

In general, the method used in w should be employed to investigate stability under 

axisymmetric perturbations (n = 0). 

We note that for a field of mass forces having potential H = Bz (B is a constant, z is 
the value of the coordinate along the axis parallel to the field) everything we have said 
also applies to surfaces lz, ~2 whose axes of symmetry do not coincide but are parallel to 
the direction of the external field. In case of weightlessness the axes of symmetry may be 

arbitrayily oriented. 

4. Let us consider a model problem. Under conditions of weightlessness let a volume 
Q of incompressible fluid be bounded by rigid walls S and have two free surfaces ~i, E2. 
We assume that the surface S is axisymmetric in the neighborhood of the contours L:, L= (see 
w and that the pressures Pz, P= on El, E2 are constant. Then El, ~2 will have the form of 
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Fig. I 

Fig. 2 
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~~ 

711 /'t0~ IIO~ 170~ Pt 
Fig. 3 

spherical segments. We let Sz, B2 be the half-angles of the segments and R~, R2, the radii 
of their bases. The necessary condition for equilibrium of the volume is 

P1 ~ ~1 sinR1 31 ~- P2 ~ a~sin/~2 3= (4 .1)  

The plus sign in (4.1) corresponds to the case in which the i-th meniscus is convex 
with respect to the region Q (Fig. la) and the minus sign to the i-th meniscus, concave 
(Fig. ib). 

Assuming that the fluid ideally wets the surface S of the rigid walls up to the contours 
L~, L2, we consider the stability of an arbitrary equilibrium system of two spherical seg- 
ments having parame.ters {oi, Ri, Bi}. 

On the surface E i the problem (3.3) has the form (i = i, 2) 

~ i s in~  ( d~ d n~ ) 
Ri~ 'd '~- [ -c tga  d~ sin~a -~2, u ~,u (4.2) 

0 < c z  < ~ ,  n = O,t 
I u (o )  l < +  ~ ,  u ( ~ )  = 0 

Here the boundary condition at point 8 i follows from the complete wettability. 

We note that (4.2) has the same exact form for both convex and concave menisci of ~i, 
~2.5. while the volumes Vk, wj (i.ii) for the eigenfunctions of the problem (4.2) enter into " 

as the second power. Thus, the stability of the system {Z:, Zz} of spherical segments does 
not depend on the meniscus convexity-concavity combination, but is determined solaly by the 
quantities {~i' Ri' Bi}" 
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Let us consider the following auxiliary problem (0 < y < n): 

d~ d n~ ~ ) 
- -  sin ~ T ~ -+- ctg a d--~" -- .  Sin~ u -:- 2 u = ~lu 

O < a < V ,  n = O , t  l u ( O ) [ < + ~ ,  u ( ? ) = O  
(4.3) 

For y = $i and fixed n, the eigenvaiues ~• of (4.2) and ~i(y) of (4.3) are con- 
nected by  t h e  f o l l o w i n g  r e l a t i o n s h i p  ( i  = 1,  z ;  we o m i t  t h e  i n d e x  : 

' ~ ~b(~), j = 1, 2, ( 4 . 4 )  
~'~ (~# = n~---~ " " " 

Let us check to see that the necessary conditions (3.4) for stability of the system with 
respect to nonzero harmonics (n ~ i) of the perturbations are satisfied. The first eigen- 
function of (4.3) for n = I is an associated Legendre function of the first kind [7], p ,I 
(cos a), where q, is the first root of the equation P (cos y) = 0. Calculations for various 
values of the angle y~ (0, 7) show that q, > i. Thu~, the first eigenvalue of (4.3) for 
n = i, 

is positive for 0 5 u < ~. Taking (4.4) into account, we see that the necessary stability 
conditions (3.4) are satisfied. 

Let us consider the influence of axisymmetric perturbations. For n = 0 the eigen- 
functions of (4.3) are Legendre functions of the first kind [7], P~k (cos a), where ~k are 
sequential roots of the equation 

p~ (cos ?) = 0 (4.5) 

The corresponding eigenvalues of (4.3) are 

~ (Y) = ( ~  (~k + t) - -  2) sin ~ ? ( 4 . 6 )  

By going to the limit we can show that for y = 0 the eigenfunctions of (4.3) are the 
Bessel functions J0(gkr), where r ~ (0, i), and the gk are roots of the equation Jo(~) = 
0 [8]; here nk(0) = gk 2. For ~ = 7/2 the eigenfunctions of (4.3) are Legendre polynomials 

[7], P=k_1(cos ~), i.e., ~k(7/2) = 2k(2k- i) --2. 

For arbitrary y ~ (0, 7), Eq. (4.5) may be solved by digital computer. Calculations 
have shown that the eigenvalue ~(y) is positive for 0 ~ y < 7/2 and negative for 7/2 < 
y < w (Fig. 2). The remaining eigenvalues ~k(Y) are positive for 0 ~ y < 7. 

Depending on the values of the half-angles 8~, 82 of the spherical segments E~, E= 
we distinguish three types of equilibrium forms: I) B:, $= < 7/2, II) B:, B= > 7/2, III) 
one angle greater than 7/2 and the other less than 7/2. Taking into account (4.4) and 
cases A, C of w 2, from the way in which the eigenvalue ~ depends on the angle y we con- 
clude that the type-I equilibrium forms are stable, while the type-ll equilibrium forms 
are unstable for any values of the parameters ~ Ri (i = I, 2). 

We still must investigate the stability of the type-Ill equilibrium forms. We let 
gk(Y) represent the volume of the normalized eigenfunction of (4.3) for n = 0, 

I [I( ]-"' t P ~  (cos a) sin a da P ~  (cos a)) ~ sin a da gk (T) = s i n  ? ( 4 . 7 )  
0 0 

O < 7 < n ,  k = t ,  2, . . .  
Let Vk(~), Wk($2) be the volumes of the normalize& eigenfunctions of (4.2) on the 

spherical segments ~, E2, respectively. It is not hard to show that 

v~ ( ~ )  = n~g~ (~ ) ,  w~ (~s) = R~g~ ( ~ )  ( 4 . 8 )  

To be specific we shall everywhere assume that $~ > ~/2, $~ < ~/2 for type-Ill equi- 
librium forms. We fix a certain angle ~:. To find the angle $~ < 7/2 for which the sys- 
tem {E:, E=} loses stability we must solve (2.5) for X = 0. This equation takes the fdl- 
lowing form when we allow for (4.4), (4.8): 

~ g ~ ' ( ~ ) ~ ,  g~'(~) = 0  ( 4 . 9 )  ~=~ n~ (~-----V + ~ ~=~ ~ (~----~ 
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TABLE i 

2 89.0659 84.272 82.467 
3 89.0657 84.264 82.447 
4 89.0656 84.262 82.441 

t25  ~ 

83.240 
83.045 
83.02t 
83.014 

t70 ~ t ~  ~ " I 150 ~ 

84.532 ] 86.983 
84.330 ] 86.832 
84.307 I 86.818 
84.30i I 86.8t5 

t6o o 

8~.5ii  
8 8 . 4 2 5  

88.424 
88.423 

89.6,~0 
89.576 
89.575 
89.575 

where m is a sufficiently large integer, and 

= ~IR~ / ~R# (4. i0) 

Assume that a root of (4.9) has been found. We represent it by B2~(BI). For any 
y ~ (0, ~/2) the inequalities [7] 

0 <NI(7) <N,(7) <.. :, gi ~(7) <E, ~(7) <... (4.11) 

are satisfied; it therefore follows from the form of (2.5), (4.9) that the system of menisci 
{El, Z2} will be stable for a given ~ and angle BI if B= < B=~(B~), and unstable if B= > 

With the parameter ~ fixed, Eq. (4.9) determines a certain curve B=~(y), y ~ (~/2, ~). 
The function B= ~ is continuous on the interval (~/2, ~), where B2~(~/2) = B2~(~) = ~/2. 
We may use (4.11) to show that for 0 < ~ < ~, the B2~ curve is strictly below the B2~ curve, 
i.e., 82~(7) < B2~(y), ~/2 < y < ~. 

Figure 3 shows the functions B~5(B:) for several values of the parameter ~ (curves i- 
i0 correspond to ~ = 0.4, i, 2.5, 5, i0, 20, 50, I00, 200, i000). The values of the angles 
B:, B= are plotted along the axes in degrees. According to the previous discussion, for any 
fixed value of ~ > 0 the B=~ curve divides the square {~/2 < ~ < ~, 0 < B= < ~/2} into a 
region of stable equilibrium forms (type III) and a region of unstable forms. Specifically, 
the part of the square below the 8= ~ curve is the stability region and the part above, the 
instability region. The hatched region of Fig. 3 corresponds to instability of type-lll 
equilibrium forms for ~ = I0. 

A digital computer was employed in the construction of the ~2 ~ functions. The eigen- 
values qk(y) and volumes gk(y) (4.7) of the normalized eigenfunctions of (4.3) were tabulated 

r ~ for numbgrs k = i, 2, ..., 6 and angles y f om i to 178 , for every degree. Values at inter- 
mediate points were found by interpolation; then for a broad set of parameters ~ we succes- 
sively solved (4.9) for B: = 91, 92, ..., 178~ the number of terms kept varied from i to 6. 
Table i shows values of the roots B~, m of (4.9) with ~ = i for several angles ~ and a number 
of terms m = i, 2, 3, 4. As we see, the calculation process for B=~(8~) converges well. 

As we noted in w there may be cases of systems of two equilibrium surfaces that are 
stable under perturbations having zero volumes at each surface and unstable under arbitrary 
perturbations N~ D~, N=~D=, that are associated by the condition (i. i0). The calcula- 
tions show that one example of such a system is an arbitrary unstable form of equilibrium 
for the pairs of spherical menisci considered above [the first roots of (2.9) are positive 
for any angles ~, ~2]. 
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3. 
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